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Abstract

This paper presenthe ReliableMulticast ProtocolRMP). RMPprovides a totally ordered, reliable, atomic
multicast service on top of an unreliable multicast datagram service such as IP Multicg&sfiRgs fully and
symmetrically distributed sthat nosite bears amndue portion of the communication loa&MP provides a
wide range of guarantees, from unreliadigivery tototally ordered delivery, to K-resilient, majority resilient,
and totally resilient atomic delivery. The@®S guarantees aselectable on a per packssis. RMPprovides
many communication options, includingtual synchrony, a publisher/subscriaodel of message delivery, a
client/servermodel of delivery, anmplicit naming service, mutually exclusive handlées messages, and
mutually exclusive locks.

It has commonly been held that a large performance penalty must be paid in omgéertenttotal ordering-
-RMP discounts this. On SparcStation5's o250 KB/sec EtherneRMP provides totally ordered packet
delivery to one destination 4070 KB/sec throughput amiith 4.0 mspacket latency. The performance stays
roughly constanindependent of the number of destinatiotor two or more destinations onlaAN, RMP
provides higher throughput than any protocol that does not use multicast or broadcast.
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1 Introduction

Totally ordered, reliable broadcast and multicast protdeal® existedor quite some timgChMa84], and
provide a powerful toofor programming distributed systems and distributedabases [Chang84]. New
applications such as Computer Supported Cooperative YW&KW) programs, groupwasystems and shared
tools can also benefit greatly from this service. Inpést,these protocols have had problems with performance,
efficiency, and/or scalability. hasbecome a widespread belitfat theseareinherent problems with a totally
ordered reliable multicast protocffRaLi93]. In part,this concept resulted from tHact that inthe past
multicasts had to bienplemented as series of unicasts to each destination. Redewlopmentsuch as the IP
Multicasting standard [Deering88pw allow amulticast datagram to be sentrultiple destinations over an
internetwork. In the casghereall destinationsare onthe same LANpnemulticast packet to all dhemcosts
the same as a unicast packet to just one.

This paper presenthe architecture of the ReliabMulticast Protocol(RMP). RMP provides a reliable
multicast service on top of unreliable datagram services such as IP and IP MulticBdWRyis based on the
token ring technique originally proposed by J. M. Chang and N. F. MaxemcliGklita83] and [ChMa84].
This CM protocol provides totally ordered atomic broadcast to a single group of broadcast clients on a LAN.

While RMP uses an algorithm similar to this CM protocol fte basicdelivery, it differs in thefollowing

ways:

1) RMP provides multiple multicast groups, as opposed to a single broadcast group.

2) RMP provides an implicit naming service that maps textual group names into communication groups.

3) Instead of only providing totally ordered, K-resilient packet delivery, RMP allows the user to select from a
wide range of guarantees, including agreed and safe delivery, selectable on a per-packet basis.

4) Forincreased scalability MP allows processethat arenot members of group tosend messages to it,
and receive replys to messages, through its multi-RPC mechanism.



5) The CM membership algorithm handikcases, and takes amtended period of time taun. RMP
optimizesfor thecommon membership changase with the addition of mew membershiplgorithmthat allows
non-failure membership changes to be made at the cost of only a single group message.

6) RMPuses anew membershiplgorithmthathandledaults. It is fasterlesslikely to mistakenlyremove
processes from a group, and supports virtual synchrony and extended virtual synchrony.

7) To facilitate replicated serviceRMP provides a set of mutually exclusive handlemns messages. A
message can request that it be handled, and at most one process will reply to the message.

8) RMPprovides awindowed flowand congestion control mechanishat allows RMP to provide high
performance over both LANs and WANSs, even in the face of congestion.

9) RMP shows how to seamlessly extend reliable multicast to hosts that do not support multicast.

10) Theimplementation oRMP has dmonstrated exceptional performanceor asingle destination, its
performance rivals oexceedghat of most TCP/IP implementations. The performanstys almost constant
irregardless of the number of grooembergper LAN. For totallyordered messages to groups of thremore
processes, RMP provides performance equal to or better than any protocol we know of.

The basidRMP protocol provides what can be thought of as N-way virtual circtétted groups, between
sets of processes connected by a multicast medium. It is fully distributbdf sdl processes pldfie same role
in communication. While primarily usinACKs for errordetection and retransmissicRMP provides true
reliability and limits the necessary buffer space by passing a token around the members of a group.

RMP provides a wideange of reliability and ordering guarantees on packet delivery, selectable on a per
packet basis. Imaddition to unreliable and reliableut unordered quality of service (QoS) levaRIMP can
provide atomic, reliably delivery gdackets ordered with respect to each source. It caretiisiently provide
delivery ofpackets in both total and causal ordeingcausalordering as defined ifbamp78]. Totallyordered
delivery also provides virtual synchrony, disst defined by thelSIS project [BSS91]. Virtualsynchrony
guarantees thathen new members join or leavg@up these operatioappear to be atomic, so thhe sets of
messages delivered befaad aftereach membership changee consistentacross all sites.Using K-resilient
fault tolerance RMP can providetotal ordering and atomicity guaranteegen inthe face of site failures and
partitions. For a set of packetdth a resiliency level of K, mor¢ghan K members of agroup have to
simultaneously partition away or fail in order to have the possibility of violatingpthkordering and atomicity
guarantees. By setting K to a number larger than hathtérabers of a ring and not allowing minogrtitions
to continue, total ordering, atomicity, and virtgghchrony can be guaranteed in the face of any sabdfary
partitions and failures.

The basidRMP model of communication is publisher/subscribamodelbased on textuajroup names.In
the absence of netwogartitions, anymember of group (a subscribewyill receiveall packets sent (published)
to the group associated with that group name. RMP also provides a clientisedetofcommunicationywhere
the serveraremembers of ayroup and the clientare not membersbut cancommunicate with the servers by
sendingmulti-RPCpackets to the group. These packets masirbply acknowledgedfterbeing delivered to the
group with the requested QoS, or they may be responded to by a single member of thRgiiduges handlers
to guarantee that atost one member willespond to alata packet. Each dgpacket inRMP has aroptional
handler number associated with These correspond to a set of mutually exclusive handler Velcich group
members may hold. Thgroupmember who holds a given handler lock will be notifigabn delivery of adata
packet with this handler numbtrat it is supposed tespond to the request. Handler loeks provided in a
very efficientway, and can be used for any type of applicatfmat requiresmutually exclusive locks shared
among a group of communicating processes.

A common belief irthe researcliommunity isthat totallyordered reliable multicast protocase inherently
slow. This belief has come about in large part due to the experiences researchers have had with the early versions
of ISIS, which for a long timewasthe only system ofhis type available.ISIS hassince become mudaster



[BiCI94], but the misconception remains. Experience VRIWP belies this concept.RMP wastested on 8
SparcStation5's on a 10 Mb/sec (1250 KB/sec) Ethernet. Iretlvisonment, the throughput to single
destination isL070 KB/sec, or 86% dhe networkcapacity. For groupommunication to angroup of two or
more destinations onlaAN, RMP exceeds not only the maximuimroughput ofTCP/IP, butany other possible
non-multicast and non-broadcast algorithm. This is because both the packet latency and throRMpugtay
roughly constant as the number of destinations increase, whereas the performance of other algorithms decreases
linearly. For a groupwith 8 destinationsRMP has a 7.MB/sec aggregate throughputhich is5.9 times the
bandwidth of the supporting Ethernet. The through@uRMP does not significantly change agagtor of the
ordering guaranteebut the per packet latency does. A totally ordered pagskkEbn average have a latency
approximately twicaghat of anunordered or source ordered packet, and this incréasésresilient packets.
This QoS for latency tradeoff is fundamental to distributed protoaish is whyRMP allows this tradeoff to
be made on per packet basisDespite this moderate latency pendtiy its total orderingRMP latency to two
or more destinations is still lowénan most other protocols. Theref®®&P demostratesthat a fault tolerant,
reliable, atomic, fully distributed, totally ordered multicast protocol can actually achieve much better performance
in group communication than systems that don't provide these features.

Section 2 compard2MP toprevious work. Section 3 describes REP algorithms. Section 4 analyzes the
performance oRMP, and section 5 compar&MP toprevious work. Finally, section 6 drawsar conclusions
and outlines future work and section 7 acknowledges all the support we have had for RMP.

2 Design decisions and comparison to previous work

The biggest decision in building a reliable multicast protocbbis toguarantee the reliability and stability of
messages without sacrificing throughput or latency. Latendgfised as the time between whesite has a
packet to send anghen it is delivered to theestination. A message defined as goingtablewhen the sender
knows all destinations havesceivedit. This isthe point at which it no longer needs to hmd for possible
retransmissions. In a reliable multicast protocol, perhaps the most imgadiminfluencingthroughput is the
number of ACKs sent per packet, so it is importanmioimize this. In order tgorovide guarantees of total
ordering and atomic delivery in thiace of failures, a reliable multicast protoeall often delay delivering a
packet until after it haseceived one or more acknowledgements of deliv@lyis latency for gurantees tradeoff
is fundamental to thislass of protocolsywhich is whyRMP allows this tradeoff to benade on ger packet
basis.

Traditional protocols use positivacknowledgmentéACKs) from the destination tacknowledgesuccessful
receipt of a packet.While quickly providingstability of messages, this approadbes not scalevell to a
multicast system, because each destindtamtosend arACK for each packet or set of packets. Thigely
defeats the advantage of using multicast packets, because it decreasesdffitiettoy and the performance of
the protocol. Even though theaeknowledgmentare small, becaugheyall aresent at the same time they can
cause network congestion. In addition, having to process an ACK from each destination increases the load on the
sender and decreases the performance of the protocol. One optimization iadknoetiedge evergacket. In
general, as the number of packets per ACK increaseenty of timefor a message to go stable increases, but
the lower the loads. As another approacmany systems use negati&eknowledgment$NACKS). Negative
acknowledgmentshift the burden oérror detection from the source to the destinatiofackets arstamped
with sequential sequence numbers which destinatisasto provide reliabléelivery by detectingyaps in the
sequence numbers and requesting retransmission opattieets corresponding to thgaps. Because the
informationthat a packet hdseen received is nevpropagated back to the sender, the senddrgese protocols
do not ever know for certain that a destination has received a packet. Because of thishaeaderigsdefinitely
keep a copy of each packet sent if the protocol is to be considered truly reliable. In addition, a losilpacket
be detected until another packet is recesecktessfullywhich maytake along time if thepacket is thdast to be
sent to the rindor a while. Because of these problems, RWIP algorithm uses a combination of these two



approaches. The basalgorithm is based on the ideas of the protocol origindiiype by Chang and
Maxemchuk[ChMa84], [ChMa83].

The MBusl [Carroll93] waghe original motivatiorfor RMP. It provides a central server througthich
clients connect witffCP/IP streamsnd an easy to use interfadesigned to ease the implementatio€8CW
applications. It provides both totatdering of messages and reliable multicast, hasvery limited scalability,
since all packets must be routed through a central point, and duplicate copies sent to each destination.

The Totem protocol [AMSM92] is perhaps closestRMP in its approachand has reportegdimilar
throughputevels toRMP under heavy load. HlIso uses a rotatirtgken ringapproach, bubnly providesfor a
single ringfor eachbroadcastiomain. Totem avoids using any ACKs dmyly allowing thecurrenttoken holder
to senddata. Thisprovides highthroughput undehigh load over a low latency netwotbut provides lower
throughput and longer latency undew and asymmetrical loads. In addition, becausmiy allows asingle
sender to transmit at a time it will provide lowroughput over longer latency networks. To alleviate this
problem they have proposed, but not implemented, gateways to link multiple broadcast domains together.

The ISIS system[BSS91], [Birman93] isone of the pioneeringrotocols in this field. It providesausal
ordering and, if desiredotal ordering of messages on top of a reliable multicast protocol. The reliable multicast
protocol requires separate acknowledgments from each destination, which limits performaiesesystenmthat
providescausalordering on top of IP Multicastingasbeen implemented which is much more efficigratn the
old system [Clark94], and we hope to compare RMP and this new protocol soon.

The Psync protocol [PBS89] is amgenious protocdhat usegpiggybacked ACKs to provideausalordering
of messages and detection of droppadkets. However, both it and the similaans [MSMA90]and Lansis
[ADKM93] protocols requirethat all ofthe members of thgroup regularly transmit messages. Tans
protocol and th&oTo [DKM] protocol implemented ortop of Lansis botlprovide total ordering of messages.
These algorithms requitbat at least anajority of the groupmembers be heard from before a messagebe
delivered, which causes latency to increase by at least an order of magnitude. For example, for the ToTo protocol
to send to a group of 8 destinations under heavy, periodic load from all sources (the best case), the2at8ncy is
ms. This increases to 114.1 ms for lightly loaded poisson sources.

The Multicast TransportProtocol (MTP) [AFM92] is an @ample of an asymmetric reliable multicast
protocol. One site is the communicatiorasterwhich grants"tokens" to groupmembers to allow them t&end
data. These tokens provide both flow control athl ordering of messages. This causes agrendency on
the masterwhich limits both reliability and performanceMTP also reliesexclusively onNACKs for error
recovery, which limits reliability and requires extreme amounts of buffer space.

The protocol by Crowcroft and Paliwofi@rPa88] isone of thefirst protocols to proposeeliable multicast
over an internetwork whickupports hardware multicast. The protopodvides different levels of reliability
guarantees, and uses positaeknowledgments fromall destinations for reliability. Theaper analyzes the
flooding problemghat occurwith simultaneous ACKs frormany destinations and proposewiadowed flow
control system, in some ways similar to that used in RMP, to alleviate these problems.

The protocol by Navarathnam, Chanson, aredifdld[NCN88] is a centralized multicast protodbht uses a
single token site to providéotal ordering and reliability. It requirethat each site sendback a positive
acknowledgment before the ngdcket can be sent. Amplementation omop of theV-system take4.8 ms to
send a multicast téour destinations. This protocol alsolimited in reliability and scalability by the central
server. The xAmp protocol [RoVe92] is distributedt also waits for ACK$rom all destinations, and saill
exhibit performance similar to NCN and ISIS.

The broadcast protocol proposed by Kaashoek et. al. [KTHB88] uses a tak@nasite to serialize messages
and NACKSs for retransmissions. It piggybacks ACKs onto sent messages and has the token site regularly contact
silent sites in order to limibuffer space. This protocol has reportedy good latencyaslow as1.3 ms for a
NULL packet) because it hégen implemented aiop of bare hardwareHowever, because each message must
be transmitted twice it will fundamentally achieve lowmoughput tharRMP -- 600KB/sec is a rough upper



bound for a1250 KB/sec Ethernet, a®mpared tB42 KB/sec forRMP. This will alsolimit the latency for
larger messages; as a 8KB packet in their protegioépend aminimum of13.1 ms orthe Ethernet, as opposed
to 6.7 ms for the message and ACK of RMP.

3 System usage and architecture

RMP is a transportevel protocolthat provides reliable datagradelivery ontop of an unicast or multicast
asynchronous, unreliable datagram service. It allowdtiple groups of processes tmmmunicate with
selectable levels of reliability and ordering through uke of a QoS3ield in eachdata packet.RMP supports
both implicit and explicit naming asell aspublisher/subscriber and client/serveodels of communication. In
addition, RMP allows processes that ao¢ multicast capable to participatetire groupcommunication through
the use of forwarding and non-multicast capable flags.

3.1 RMP entities

RMP is organized arourfdMP processegroups, and membership viewBhe basic entity that us&MP to
communicate is called &MP process. ARMP process typically corresponds tosagle UNIX process,
application, or "software bus". Themay be multipleRMP processes on the same host. HabtP process is

Token ring name: whb.sessionl.ietf.net Token ring name: whb.sessionl.ietf.net
Token list ID: a.uiuc.edu:5000:123000 Token list ID: a.uiuc.edu:5000:123001
Multicast address: 233.9.8.7.6543 % Multicast address: 233.9.8.7.6543

Remove member
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Token ring name: oodb2.acsl.uiuc.edu % Token ring name: oodb2.acsl.uiuc.edu

Token list ID: z.wvu.edu:30001:123400 Token list ID: b.uiuc.edu:5000:120000
Multicast address: 233.1.2.3:456 Multicast address: 233.1.2.3:456

Figure 3.1: RMP entities
uniquely identified by the IRddress of its host concatenateith a UDP port numberthat may not be reused
betweerprocesses on a host and is constant over the lifeadbfRMPprocess. This IDgalled aRMP process
ID, is unique across all RMP processes in the internetwork.

A group is the basic unit of group communication and message ordering in RMP, and consists of a set of RMP
processes that areceivingpackets sent to given IPMulticast address angort. EachRMP process may be a
member of multiple groups, and non-members can reliably send to a group and get optional repliesfoens
of a group using the multi-RPC mechanism, described belbach group has group namewhich is a text
string similar to those used in current Internet host natdake host names, a groupame identifies group of
members instead of a sindlest. A groupdentified by agroupname is not guaranteed to be uniq@eoss an
entire internetwork, as two groupsRMP processes thgin a given IPMulticast address and posfth a given
group name may not overlap due to network partitions or due to non-global multicast domains.

The mapping of group names to Multicast {address, portJTL} tuples may either bbandled by an
external multicast address allocation authority such as [PEA94],naayitbe handled biRMP. The default
mapping policy uses a hash functiortuen the text string intmne of arange of multicast addresses (a subset of
theclass D IP address space, currently 24 bits) and a 15 bits of a port numbdiighithie of a hashed RMP
port is alwayshigh, to keep it from conflicing wittstatically assignegbort numbers. Each groupember



specifies its desired TTL when joining a group. The TTL for packets sent to a group is sebdaithem of all
the group member's TTL requests. Hasliisions to the samgort and address ahandled by using guaranteed
unique membership view IDs, as described below.

The membership of groupwill usually change over time. divenlist of themembers of @roup is called a
membershipview. A membership view is alwaysreated by a singl&MP process, and igentified by a
membership viewD. Similarly to Grapevine[BLNS82], a membershipw ID consists of an ID that isnique
acrossthe breadth of the internetwork concatenated with a cotlmers uniqgueacrossthe maximumr TL for
that ID. The first half of anembership view Ixonsists of th&RMP process ID of the proces$isat created the
membership view, and the second half is based on a counter. One counter is maortaaeitRMP process.
When anRMP processstarts, itinitializesits counter tahe currentime in millisecondsand it increments this
counter every time itreates anew membership view. Bgot allowing anRMP process to generataore than
one membership vievper millisecond theprocess hadeen in existencand by limiting thelifetime of a
membership view o3l millisecondgjjust under 25 days), we guarantkat amembership view ID is unique as
long as the clocks of the generating machimes stable. This guarantediminates theneed to keephe IP
Multicast address and port for a groupique acrossdifferent groups, although it is desirable &woid these
address collisions. In the case of collisions to the same addregsrgridMPwill use the membershipew IDs
to filter the packets at each RMP process.

Figure3.1shows an example of these entifiesa sample scenarigith two groups andive RMP processes
spread over three hosts. new membership view ID is generatied both groups after emember is removed
from each. Notice that the new ID does not have to be created by thesHEocess that createhlelast one
for that ring.

3.2 Atomicity, reliability and ordering guarantees

Different multicast applications require many differtavels of reliability and orderinguarantees in the face
of transient network failures such as dropped packets. These applications also require different atomicity
guarantees in the face of site failures or partitioRer example, &CSCW application mayneedpackets to be
reliably delivered afall sites, with the packets from the same soded&vered in theorder they wereent. This
application may be able to continaen if somesites fail away or the group partitions in two. On dtieer
hand, a distributed databasay requirethat all packets bdelivered in the samital order at all sitegven if
some of the sites partition away. RMP supports a wide range of guarantees on paal@isnigydifferent QoS
levels to be specifiefibr packetdeing sent to group, and byllowing applications to specify thainimum size
of a partition that cagontinue to function in the face tdilures. The selectable Qd&selsarelisted in figure
3.2. All of the QoS levels build upon previous levels, providing any guarantees that a smaller level provides.

The basilRMP QoSlevelsare unreliable, reliable, souroedered, and totally ordered. Thase provided by
differing the time at whepackets ara@leliveredand enabling or disabling the duplicate detectdACK, and
ACK policies. While throughput remains similar fahe different QoSevels, higherQoS levels increase the
latency of packet deliveryFor example, in theeommoncase offew droppedpackets, source ordered packets
haveaboutthe same latency as unordered packets, and totally ordered packesbbattevice the latency of
either.

The unreliable QoS is most similar to UBrAffic. Anunreliable packewill be delivered 0, 1, or more times
to a destination and theege noordering guarantees on delivery. A reliable pagkttitbe delivered 1 or more
times to each destination. The source ord€¥e8 provides thequivalent guarantees of running &P socket
from each source to each destination. Packets arrive epactlyat each destination in the samnger asthey
were sent from the sender.ousce orderdoes not provide any guarantees on the ordering of pafrkets
multiple senders in thgroup. Totallyordered delivery serializes| of the packets to group,deliveringall of
the packets in the same order atratmbers of theyroup. Withoutglobally synchronized clocks, it is not
possible to tell which messageas "really”" senfirst, but total ordering guaranteethat someorder will be



imposed over all messages sent to a group, and that messages will be delivered in this order at all sites. This QoS
is equivalent to running ACP socket from each source into a cenbias which serializes thpackets andhen

sends thenout through a separafeCP socket to each destination. Totally ordered pac&etsalso causally

ordered, as per Lamport's definition[Lamp78].

ISIS first defined the notion ofirtual synchroniBSS91], [Birman93]. Virtualsynchrony often allows a
distributed application to execute asitf communicationwas synchronousyhen it isactually asynchronous.
The key requirementor virtual synchrony ighat all sitessee the samset of messages before aafter a group
membership change. In other worfls, a given set of packetslelivered to agroup, amembership change
operation will partition these packets into the same two sets at all sites, and all packetéirist getwill be
delivered atall sites before any packetse delivered in the seconskt. RMP provides virtual synchrony for
packets thahave aQoS of at least totally ordered. Thidisne by implementingach membership change as a
packet with a totally ordered QoS.

A critical question in group protocols is what happengdtvery guarantees in the face of failures or
partitions. Tosolvethis problem RMP offers fourlevels offault-tolerant guarantees: atondelivery within
paritions, K-resilient atomibetweenpartitions, agreedielivery betweerpartitions, and safeelivery between
partitions. The exact semantics of agreed and safe delivery are defined in [DKAMI9#]theseguaranteesely
on a method ofailure detection based on timeouts. If communicatioons or morgroupmemberdails for an
extended period of timgay 15-30seconds), th&MP failure membership algorithwill remove them from the
group. If this is due to a temporary parition, they can later rejoin the group, but as new members.

Because anembercan notjoin back in to a ring as arld member once llasbeen removed, it is not possible
for a group to partition into two halves atmen rejoin. This is thekey toatomic delivery withirparitions. RMP
guarantees that for totallgrdered packets, if angnember in apartition delivers apacket, all of theother
members of that partition will deliver that packet if they were irgtieepmembership view when thgacket was
sent and if they remain in thgroup for a sufficient period dfime. Since no totally ordered packeill be
discarded until it habecomestablewithin a partition, and no packet cdiecomestablewithin a partition until it
hasbeen receivedbut not necessarily delivered) @l of the members of theartition, if any sitedelivers a
packet, all of the other sites in the partitioii receive it before it is discarded ligat site. Once a sitdhas a
packet, the only way it will not deliver it is if it crashes, upon which case it will be detecteenamekd from the
group.

This level of atomicity does not provide any guarantedmut delivery or ordering ofpacketsbetween
partitions. K-resilient atomicitypetweenpartitions is thefirst level of guarantee that addresses this. K is the
minimum number of siteshat must fail or partition awalyom a group over a short period of time, in order to
violate atomicity guarantees. Thispeovided by having each member M verifiat at least kothermembers
have received packet before M cadeliverit. In this caseeach partitiorwill always have ateastone member
which has received all of the packets that have been delivered at any site.

The nextlevel of atomicity is called agreed ordering, or majority resilience. Agreed ordgusgntees that
no matterhow manypartitions or failures occur, anyembers of ayroup thatdeliver any two messagedll
agree on the same ordering of the messages. |&N@bguarantees totabrderingacross partitions, but not
atomicity. This level of atomicity is achieved by not allowing minimum partitions to continue and by rsaiéng
the majority of the members of a group have a message before any member itlelRetts of thesaestsrequire
a possibly conservative calculation of how many members are in the group, which Maxddll MaxN isequal
to the maximum number of members that are in any membership view for any packet which is not yet stable.

The finallevel of fault tolerance is safdelivery,also calledotal resilientdelivery. This level requires that a
packet be stable before it can be delivered. This occurs after the tokmehpassedncearound the ringfter
a packet was received. At this point, the member knows that all other members have rebeivteyt,may not
all deliverit. It is still possiblethatone or more of theites could fail beforeelivering thepacket. This is the
highest level of atomicity that any system such as RMP can reasonably provide.



Ordering guarantedsetweerpackets of different Qofevelsaredetermined by the lowe&o0S of the packets

in question. For example, for a set of packets @kh source ordered QoS and a set of packets S2 with totally

ordered QoS, the best guarantee that is provided over the union of the two sets is source ordering.

3.3 Communication model
The two main options ircurrent communication addressingre explicit and implicit addressing.
supports both athese addressing models, awgports botlthe peer groupnodel of communicatioand the the

client-servermodel of communication.

RMP

Protocols such 8€P and UDP require explicinaming of the
destinations of communication, while systeswch as Grapevine[BLNS82] and the MessageBus[Carroll93]

allow implicit naming through gublisher/subscribemodel of communication. With implicit naming, RMP

processes join disubscribe" to a group by specifying theme of agroup to join, and other processes "publish”
or send messages to tiggwoup by using the groupame or a membership view I&ssociated with theame.
Whenthis model isused, messages sent to the groameare deliveredautomatically to alRMP processes, if
any, that areanembers otthat group, so n@xplicit knowledge ofthe membership of group isneeded. As
explained aboveRMP does this by mappingroup names into {multicast addregsyrt, TTL} tuples that are
used to send to other members of the group.

Instead of specifying a group bts name, RMP processes may explicitly name anoth&¥P process
(specified by an IP address and a Uaet) that is anember of thgroup and request that thieemberforward

packets on behalf of. In addition to allowing members to joingroup based on a process ID, rather than a

name, this can also be used bya-member or non-multicasapablemember to sengackets to a group.
When coupled with the notification of members of therent membership of thegroup atwhenever the
membership changes, this allows processes to exert explicit contrajrougrnaming and membershighen

desired.

The default communicatiamodelfor RMP is that ofpeer groups. In a peer group, easkmber receives all
of the messages sent to tireup, and a process has to bmember inorder to send to thgroup. Inaddition to

QoS Name and Service Guarantees Delivery Time

Unreliable | Packets are delivered 0, 1 or more times, | Immediately upon receipt of a data packet
in any order.

Unordered | Packets are delivered at least once, in | Immediately upon receipt of a data packet, with
any order. missing packets detected and rerequested

Source Packets are delivered exactly once, in the | After all of the data packets from the same

ordered order they were sent from each source. source and with smaller sequence numbers

have been delivered

Totally Source ordered, plus all totally ordered | After all of the data packets with smaller

ordered packets are delivered in the same order at | timestamps have been delivered
all sites.

K resilient | Totally ordered, plus delivery is atomic at | After all of the data packets with smaller
all sites that do not fail or partition, | timestamps have been delivered and the token
provided that no more than K sites fail or | has been transferred K-1 times
partition at once.

Majority K resilient, with K set to (MaxN+1)/2, | Same as K-Resilient, but also requires that only

resilient where MaxN is the highest number of | a majority partition can continue functioning.
sites in the group for any membership
view in the OrderingQ

Totally K resilient, with K set to N. Same as Majority Resilient

resilient

Figure 3.2: RMP QoS levels



a peer groupnodel ofcommunicationRMP also supportghe client-servemodel of communicatiothrough the
multi-RPC mechanismThis mechanism allows non-members to send to a ring (using either implicit or explicit
addressing) and to optionally get replies from a groember. A multi-RPC packean bedelivered withall of
the QoSlevelsavailable to a membeWhen thepacket is delivered, theurrenttoken site normally sends back
an acknowledgement to the non-member, althotgh feature can be disabled. Multi-RPC packets are
asynchronous and have integrated flow and congestion control.

Both multi-RPC and normal data packets can receive replies through thehasellefs RMP provides a set
of mutually exclusive locks to eagjioup, thatmemberscan request and release very efficiently. Tfitst 6 of
theseare designatedhandler locks Each data or multi-RP@acket can specify a handler ftve packet. The
currentmember who holds the corresponding handler lock is expecteglioto this message. If a request is
from a groupmember, the reply ialso sent to thgroup. If it is from anon-member, it is sent to onthat
member. Together, the multi-RPC and handler mechanisms allow very efficient replicated servers to be
implemented.

3.4 Non multicast capable processes

For efficiency, RMP should berun on top of amunreliable multicast service. Howevéoy flexibility, it also
supports the use of hosts that are not multicast capable. This is done through the use of forwarding and multicast
capable flags. EadRMP process has tbave aUDP/IP portopenfor sending and receivingackets in addition
to any IP Multicast addresses it is usingny packet that isent to thdJDP/IP port for arRMP process can
have a forwarding flag turned on. This flag directs the receiving process to copy it to the IP Multicast address for
that group, with local loopback disabled.

Some of thgpackets sent iIRMP areunicast to their destinations. As ed®MP process isdentified by its
unicast address, these addressesalready stored ithe membership vieor a group. Each ahese RMP
process IDs irthe membership viewontains an additional multicast capable ftignoting whether or nahey
can receive IP Multicast packetg/hen amulticast is sent to a group, if amembersarenot multicast capable,
the sender must alsend aunicast to each of these destinations. Irrdis¢ ofthe paper,wherever we mention a
multicast from a group member, we are referring to this extended notion of multicast. Because thkasérsg of
all sites be multicast capable can easily be stored as a flag at each sitemnthisncasewill pay hardly any
penalty for the extra flexibility this service provides.

4 Algorithms

RMP provides all of these services through a sefive main algorithms. Thédasic delivery algorithm
handles the delivery gfackets to thenembers of a membership view. When a membership clheqgest or a
handler lock requesiccurs on a groughe membership view change algoritoneates axew membershipiew
and updates it at eachember of theing. Whenfailures occur in a groughe reformation algorithm polls the
currentmembers of group,synchronizes them to the sap@nt, creates aew membership vievior thatring,
and commits it at each member. Non memloars participate in a group usirge multi-RPC algorithm.
Finally, all of the senders IRMP use a flow and congestion control algorithm based on the Van Jacobson TCP
congestion control algorithmsThis section describebese five algorithms, although mooof is offeredhere
because of lack of space.

4.1 Packet types

RMP uses ten packet typesiils communication. Thesarelisted in figure4.1. The group algorithm uses
Data packets, ACKs, Confirm packets, and NACKs. Meebership view change algorithreesNew List and
List Change Request packets. The recovery algorithm fosegecovery packet types agell as NewdList
packets. The multi-RPC algorithm uses Non Meniata packets and Non Member ACK packetElow
control and congestion control is based on ACK packets and NACK packets.



4.2 Basic delivery algorithm

The basic delivery algorithm is very similar to that first proposed in [MaCh84], although RMP aildtiyde
data packets to bemestamped with a singl@CK. The basicalgorithm primarily uses NACKs foreliable
delivery, and uses a singdCK per packet or set of packetspmvidetotal ordering and stability of packets. In
RMP, all data packets atamped with a tuplfRMP process IDsequence numbéor that process, Qolgvel
for the packet}which uniquely identifies eactlata packet.Datapackets are multicast tthe members of the
group and aréandled by grimary receiver called thiekensite. When the token site receivese or moredata
packets, it multicasts a positive ACK out to thembers of thgroup. In certain cases, a NULL AGHay be
sent outthat doesn't acknowledgany data packet¢see below). Each ACK contains zero anore identifying
tuples forData packets, along with a globakguence number, called a timestamp, which seriaites the
ACK, Data,and NewdList packets in a group. ForgavenACK, the ACK isgiven thevalue of the timestamp it
contains, and each data packet ordered by the ACK is given a consecutive timéstaexample, an ACK that
orders twodata packetmight have a timestamp of 8. tinis casethefirst datapacket would receive timestamp
9 and the second would be numbered 10.

Each ACK performs a number of functions:

«It lets the sendeknow that the currenttoken sitehasreceived thepacket. In this way it functions as a
traditional positive acknowledgment to the sender.

« The timestamps in the ACKs provide a total and causal ordering on messages.

« The timestamps also provide a globakis forthe detection of droppegiackets. The receivers cdetect
any missedpackets, both ACKsData, and NewList packets, througlthese global sequence numbers. With
multiple simultaneous senders, this provides faster detection of lost packets than does detectiorsbgsedocen

Packet Type Description Multicast?

Data Packet Contains data to the group from a group member Yes
Control Packets

ACK Provides positive acknowledgment and total ordering for one or more | Yes

data packets and/or non-member data packets, as well as passing the
token and confirming that the token has been accepted by the site that

sent the ACK

Confirm Provides positive acknowledgment to the last token site that the new | No
token site has accepted the token. This function is usually performed as
part of an ACK.

NACK Requests retransmission of one or more packets Usually

New List Contains a new membership view and its own ACK. It is also used | Yes
during failure recovery.

List Change Request | Requests a change to the current membership view Yes

Failure Recovery Packets

Recovery Start Sent out when a failure is detected to start the recovery process. Is sent | Yes
repeatedly by the initiator until the sites in new group are synced to the
same point.

Recovery Vote The response to a recovery start packet, notifying the initiator of the | No

sync point for this member of the new list

Recovery ACK New | Acknowledges receipt of the New List packet for the new membership | No

List view
Recovery Abort Provides notification that an error in the reformation protocol occurred Yes
Non Member Packets
Non Member Data A data packet from a process which is not a member of the group Yes
Non Member ACK An ACK or response to a non-member data packet. No
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numbers from each sender.

As with other NACK based solutions, this single ACK does not solve the problem of detecting when a message
becomestable A stable messadesbeen received bgll members of thgroup. Tosolvethis problemgach
ACK also passethe token site to the negtocess in thgroup. Before it can accept the token, eanémber is
required to have all of the packets with timestamps lesstiia@mfthe ACK naming it the tokesite. If it does
not havesomepackets, it requestiem before accepting the tokeifihis guarantees thgtven N members of a
ring, once the tokehasbeenrotated N times, thioken site knowshat allmessages with a timestamp at least N
smaller than the current timestafmgve been received all destinations. This allows each site to detdutn a
packet has become stable, and bounds the number of packets the each site needs to hold for retransmission.

Ordering of packetgjetection of missingackets, and buffering of packets for retransmission ikagitled
with the use of twdists, the DatalList andhe OrderingQ. Th®ataListcontainsDatapackets and Lis€hange
Request packets (described beldhgt have not yet been orderedhe OrderingQ containdots each ofwhich
holds a pointer to @acket, thedelivery status ofthe packet (Missing, Requested, Received, or Delivered) the
{source, sequence number, Qd8&ntifying tuplefor the packet, and the timestarigp the packet. The fields in
a slot are not all used at all times. The slots in the OrderingQ always have monotonically increasing timestamps.

When aData or ListChange Request packet is received, it is placed intDdt@list. When anACK or a
New List packet (alsalescribed below) is received, it is placed in the OrderingQ, creatimgr moreslots on
the end of the queue iifecessary. Each packet occupies examtyslot in the OrderingQ.When anACK is
placed in a slot, the tuples it contaidentifying data packets areopied to theslotsimmediately succeeding it,
creating new slots if necessary.

Whenever aData or ACK packet is received, the OrderingQ is scanned thraagte to match uata
packets in théatalListwith emptyslots thathave beertreated by an ACK.When aslot is foundthat has the
same identifying tuple as a Data packet in the Datal.ist, the packet is moved from the DataList to thieslot.
holesoccur in the OrderingQ, NACK packedsesent outrequesting retransmission of these packets. The exact
policy for determining the destination of thtACKs and vhether or not the retransmissions shouldihieast or
multicast is a topic for continuing research. The cunpelity is to multicast NACKs to the group aname the
last known token site as the site to handle them. If there is no response to a NACK within the specified timeout, a
site will resend thé&lACK to a different site. Thiwill continue up to aconstant threshold, afterhich point the
NACK will be multicast to the entire rinfipr any site to responi. By multicasting each NACKout requesting
only a single site to respond to them, the NACK explosion problem is limited.

A site is not allowed t@ccept the¢oken until thereare noempty slots in the OrderingQ up to thast data
packet ordered by the ACKamingthis site as theew tokensite. Because of this, the OrderingQes nonheed
to contain any moréhan N ACKs and\ew List packetswhere N is thecurrent number of sites in the group.
When there are more than N ACKs and New List packets in the OrderingQ, the slots at the fromiefiatrsnd
their corresponding packets are dequeued and freed until this condition is met.

In addition to bounding thbuffer spaceneeded in aing, passing théokenguarantees thate failures and
dropped messages are detected within N messages. In order to bound the amount of time before a lost packet or ¢
failed site is detectedRMP sends NULLACKSs, which passthe tokenbut donot order any packets, if theken
site does not receive a message withgfiven period of time. With RMP, this is currently on the order of 1
second. When a ring goes quiesdentan extended period of time, the tokenpiassed all the way around the
ring once and then stops. At this point, all of the sites are guaranteed to have all of the messages.

If a site repeatedly fails toeceive theproper response tone of theactions that requires positive
acknowledgment, it declares the site dead and runs the reformation protocol, described below in section 3.4.

4.3 Membership view changes

A new membership view isreatedwhenever aRMP process joins a@roup, leaves agroup, is granted a
handler lockfor a group, or releasesl@ck for a group. Memberthat fail or partition away arkandled by the
fault recovery algorithm, described belovicor these membership vieshanges, a site requests the change by
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multicasting an unreliable Lis€hange Request packet to theup. ListChange Request packets require
positive acknowledgment, amderesent periodically until this ieceived or dault in the ring is declared. The
current token site serializes these change requests and sends out New List packets in response.

List Change Request packeise handled similarly toData packets, excephat when the tokersite would
normally send a\CK packet to order andcknowledge @atapacket, it instead generatedNaw List packet.
When a token sitereates d\New List packet, itmakes the requested change todheentmembership view, if
possible, and puts this list into the second half of the New List packet. It fills the first haliN#vtHast packet
with the fields of arACK, including a timestamp ordering the Néwst packet andhe ID of the next token site.
After the NewList packet is sent outhe List Change packet is dropped, instead of bgingonthe OrderingQ.
The NewlList packetacts asboth a totally orderedData packetwhose destination iRMP instead of an
application, and as itswn ACK. When a NewList packet isreceived, it isput onthe OrderingQ, anthen
broken down intats two halves. The ACK half is processit, which will put the NewList packetinto the
OrderingQ. From this point, it tsandled like adata packet.When thedatahalf of theNew List packetwould
normally be delivered to thRMP process, it is insteadommittedand a notification of the membershijew
change is delivered to the application.

When aRMP process igoining a group, itwill repeatedly send theist Change Request packet until it
receives a New List packeaiming it as th@ew tokersite. Because theining process may not y&now the IP
Multicast address fothe group, thisNew List packet is also unicast the joiningprocess's UDP address and
port, and it contains the multicast address aiodt for the group. Anew member is always added in to the
membership view directlgfterthe currentokensite. This forces thaew member tdake animmediate role in
the group, providing positive acknowledgmetitat it hasjoined thering and started processingessages at the
correct time. If no New List packet is received after a certain number of retries to atigemgw RMP process
creates anewgroup withonly itself init. If a ring doesactually exist for that groupame andnulticast address,
but iscurrently unreachable due to a netwpektition, asecond ring may form. Becaugeup IDs araunique,
even if this partition heals, the rings will never overlap or merge.

When a site removes itself fromreng, it must remain anember of thegroup until after it haseen and
committed thenew membership view removing fitom the ring. After leaving the ring, it must continue to
process NACK requests akdeptrack oftokenpasses until it ntongerhas any packetsom the oldlist that it
must hold for retransmission. A packet must be held for retransmission until the site knows it is stable.

List Change Request packets requesting a handler lock will not be granted if another process alrghdy holds
handler lockwhen therequest is processed. If a requeddanied, a Newist packet is still generatetut the
membership view it contains will be the same one the group was using before.

4.4 Fault recovery

In the normalmode ofRMP, thereare four types of packetshich require positive acknowledgmenbData
packets, ACKs, LisChange Requests, and NACKH, at anytime, aRMP process repeatedly timesit and
resends one of thepacketamorethan a set number of times (ten in therentimplementation) it decidethat a
failure has occurred arslartsthefault recovery protocol. The initiator of tHault recovery protocol repeatedly
polls the sites in the group tietermine who istill active and reachable, generateaeav membership view,
makessure that all sites ithe new membership view hathe same set of packets in their OrderingQ, thed
commits thidist at all sites in th@ewlist using a two phaseommitprotocol. Because tokgrasses arene of
the actions that require positive acknowledgment, a failure will be detected within N token passes.

The faultrecovery protocol is broken into two halves--creating and synchronizirdgthendcommitting the
list. Inthefirst half, the initiator repeatedly queries the other sites irothanembership view to see if they are
up, toseewhat the highest version of memberstigw they have seeis, and tofind out what their currerdync
point is. Thesync point for aRMP process isdefined as the highest consecutive timestamipagt in its
OrderingQ plusthe highest consecutive sequence numbaadreceived from each site in the didt. This
information corresponds to the timestamp of the highest pttkiea RMPprocess hadelivered with aQoS of
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at least totally ordered concatenated with the highest sequence number of a packet delivered with a QoS of at least
source ordered from eadhMP process in the ring. By responding to a query, a site provides the requested
information and confirmghat it hagoined thenew membership viewhe initiator is creating. A processaaly
allowed to join a membership view withlarger version number than anyhasseen beforeand it isonly
allowed to join ondist at a time. If any of these conditioase not met, each process detecting #reor
multicasts an aboreformation packet ougborts itsown reformation, and waits for a randdimeout period or
another reformation start packet from another site before restarting.

The goal of thdirst phase is tthave as many of the okites as possiblein the samenew membershipiew
and reach the same sync point.sdfme of thesites aremissingpackets, this may be an iterative process. If the
initiator receives a higher sync point from another protess theone ithas, it stores this @se newsync point
for the list and forwards this sync point to the other procesaé#ssites that arenissing packets requetstose
packets and send higher sync points as tieegive them. After eitheall but one of the oldsites in the
membership view have respondetti beenbrought to the same sync point,aiter no further progress hhsen
madetowards the shared sync poafter a sehumber of retries, the initiator createsmew list with all of the
members of the oléist thathave reached the same sync point. If the initiator receives a packet from another
initiator with a smaller or equal version number, it sends back a pamlifging that initiator that ishouldabort
its reformation. If the initiator receives a packet from another initiator walgar version number or if it is not
itself able to reach the shared sync point, it sends out an abort packet to the members of the list and aborts its own
reformation process, setting a random timeout before it starts the reformation again.

Once the initiatohas created aewlist, it mustcheckthat thisnewlist has at leagihe minimum number of
sites specified in theld version of the membership view. When joining a membership view, each site specifies
the minimumnumber of siteshat mustremain in a partition in the case of a failure. Thiaimumsize for the
new group is the maximum of these values for each member in the old ring. This value can be either a constant, a
symbolic constant specifying the majority of timembers of the oltist, or a constant for all dhe members in
the old list. In the latter case, any failure will always cause the ring to stop operation.

If this test is passed, the initiator createsrtbwlist and mustommit it atall of the sites.First, it multicasts
a NewlList packet to all othe members of theew list and requests a reply from each of them. Once it has
received these acknowledgments from each member, it commitevHist itself and makes itself theew token
site. If it has anyatapackets waiting to backnowledged, it sendasit an ACK orthese packets. Otherwise, it
sends a NULL ACK tgassthe token. After each of the members oftbevlist receivethis or any other ACK
to the new list, they also commit the new list and start processing packets as normal.

4.5 Multi-RPC delivery

The client servemodel of communicatiorhas become widelyaccepted as a powerful way of providing
services to users. While RMP could support this model simply by having all clients and jsanaegsoup, this
is often inefficient and will limit the scalability of client/server groups. As an altern&Me, provides facilities
for RMP processes that armt members of group to use a multi-RPC algorithm ¢enddata to aring and to
receive acknowledgments sficcessfuldelivery and/or responses from member of thegroup. This is a
powerful feature, for it allowmultiple servers to exist ingroup, and all ofthemcan get messages from clients.
These messages can be automaticatknowledged, or a single member of ¢lleup can beselected to handle
the request and reply to it. These Non Member Data packets can be delivered with all of the QoS 1®atl of a
packet sent from a group member.

The two main changdsetween éDatapacket and a Non MembBratapacket are that Alon MemberData
packet carinclude agroupname instead of a membershipw ID, and itincludes two flagghat aid ingetting
acknowledgments aesponses. Sincersn member will often ndtnow thecurrentmembership view 10or a
group, it can instead specifiye textual representatidar the ring. When it gets a replpack from thegroup, it
can cache thmembership view ID included ihis reply and use this in subsequent Non Menilzga packets.
The first flagspecifies whether or not an acknowledgment should be sent in response to the Non Ramber
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packet. If so, then when the current token site delivers the Non Member Data packet to its application, it unicasts
a Non Member ACK to the sender. Because the sdraethe responsibilityfor making surethe packet is
deliveredreliably, thisacknowledgement mageed to besent to the sender multiple timed&his is done by

sending another copy of the Non MemB&IK eachtime a duplicate of a Non MembBrata packet that has
alreadybeen delivered is receivedhe second flag provides the sarepeat reply functionalityput for replies

instead of acknowledgements. Whtis flag is turned on, the Non MembBata packetwill be delivered

multiple times to the applicatiorThis is usually used inonjunction with a handler numbfar the packet. If a

handler number is specified, the member ofgtwup thatholdsthathandler lock will be responsibfer replying

to the Non MembebDatapacket. This replwill usually be used as the AGHr this multi-RPC call, and must

be sent as many times as necessary until the non member receives it.

In order to provide source ordered (and higdefiveryguarantees onon membepackets, thenembers of a
group have tkeeptrack ofthe highest delivered sequence number from each non-member. aféesered in
the membership view along with the sequenambers formembersput aremarked with a non-membdéag.
Because of this, they are sent out as part of each New List packet, and each joining member will receive a copy of
these sequence numbers. It is the responsibilitynoinamembethat issendingsource ordered packets to set a
flag on thefirst packetsent to a groupnotifying the destinationthat it isthe first packet. Thisotifies the
members that they can create a sequence number for this processwiiftinig packet. Optionally, thesen-
member sequence numbers may be flushed pauket hasdeen received frorthat site within two times the
maximumTTL of a packet in the internetwork. If this policy is used, then-member sendemsustkeeptrack
of whentheir sequence numbers may have been flushedand sethefirst packet flag orthe next packet sent
after this occurs. If a packetriscievedthat haghefirst packet flag set antthere is already aequence number
for that sitethe flag is ignored. If @on-member sendsut a packet and it is noeceivedafter a sehumber of
retries, thenon-member should maleaire its first packet flag is set, to creataeaventry in case its entry has
been flushed. Handling these twases correctly ensurésat correctoperation willoccur without theneed of
global clock synchronization.

4.6 Flow and congestion control

Flow and congestion control policiésr reliable multicast protocolare anopen problem. Because reliable
multicast protocols primarily use NACKSs for errdetection, there is no existing explicit feedbaekh with
which destinationsan signal losses dow buffer space to the senders. In addition, the througfgrua
multicast group should be divided up between the members of thewghowgretrying to sendbut the policy for
this division is usually dynamic and noknown inadvance. Because of this, thew and congestion control
policies used b\RMP aredesigned to be orthogonal to thest ofthe protocol. Flow and congestion control
policies can be inserted easily into the protocol, and different policies can be used in diffeiremiments. As
the default, we proposeraodified sliding windowprotocol based on the Van Jacobson algorithms used in TCP
[Jacobson8a].

Two of the most common schemes used tddaflow control and congestion contratesliding windows and
leaky buckets. Leaky bucket schemesijch enforce explicitate controls oreach senderre classified as
predictive controls. Thetry to predicthow much bandwidth each sena&n use at angiven time,andthen
mandatethat the senders do not excetiiis. Calculating the valudsr theserates is difficult, andhey must
divide up the bandwidth between the senders on a relattatic basis. Thiglecreases the flexibility and
throughput attainable by these schemes. In addition, it is difficult with a leaky lscbleetefor the destinations
to signal backhattheir buffershave been overrun if a destinatiprocess stalls fasomereason. However, for
the new very high speed WAN netwotkat arebeing proposed, theost ofcongestiorcan be venhigh because
a sender can have hundreds of packetsainsit atonce. For these networks, a leaky bucket mate control
scheme may be necessary.

For networksthathave a lower latency bandwidgioduct,the drawbacks of Beaky bucketscheme may not
be necessary. For RMP, we propose an adafidweand congestion contrachemebased on anodified sliding
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window scheme.This algorithmtreatsflow control and congestion control as the same problem and solves it in

part byusingsome of thealgorithms proposed by Van JacobsonT@P. Eachsender maintains @window of

how many bytes it can have in transit at once. When a packet is sent, the window size is decreased by the number
of bytes sent, andhen thefirst copy of an ACK for a packet ieceived the window size iacreased by the

same amount. This causes tlogv control feedback to betatedamong members. If a site is overrun ands

out of buffers,when it gets the token site itan delay acknowledginginy morepackets until it can process
incomingpackets again. If thBRMP process delays too long, howevenvitl be considered to bfaulty, and it

will be removed from thgroup. This is usually desirable behavior ogerwise the other members of the ring

will block indefinitely on this one site.

The bulk of the flow and congestion control is provided by controlling the maximum size windhav at
each sender. The maximum sizetto window grows according to the slostartalgorithm proposed by Van
Jacobson, and is decreasetien anexpired retransmission alarm or NAC#&ccurs. The Van Jacobson
algorithms were originally designed to just provide congestion control. However, because theyspichgted
adaptive congestion control, RMP also uses them for additional flow control by treating NACKs as another signal
of congestion.

The Van Jacobson algorithms for congestion control that are used by RMP include:

(1) round-trip-time variance estimation

(2) slow start

(3) dynamic window sizing on congestion

(4) exponential retransmit timer backoff

Round-trip-time variance estimation comes from the observation that when a neatidskkcomes congested,
the variance on packet latenogcomes very high compared with tneerage. "If the network is running at 75%
of capacity...one should expect the round-trip-timeay by a factor of 16."[Jacob88] The proposdgbrithm
continually estimates this variance, and eliminates most afghgous retransmissionshile still maintaining
timeouts small enough to detect dropped packets quickly.

The slowstartalgorithm (2) is used to increatiee window sizdrom 1 packet to the maximumindow size
that the receiver allowghat does notcause congestion, as calculated by algorif8n This isdone by
incrementing the window size by opacket eachime that an ACK isreceived. Because thwindow size is
constantly growing, slow-start actually increaseswirelow sizefairly quickly. It will increase from 1 to W on
a network with latency. in LlogoW time.

With the assertiothat the timer algorithm almost completely avoids retransmisdioatsarenot due to lost
packets and with the observatitiat most lost packetare due to congestion instead efrors, itfollows that
most expired timers signal congestion. Algoritf®) uses this to resporapbgressively to this congestion by
exponentially reducing the window size bycanstant number (currently 50%) edahe that atimer expires.
The original protocol actually uses adtlevel bound orthis window in theface of congestion. It reduces the
window size to one packet any time an error occurs, uses slow start to quickly builiQd3p tdthe level before
the error, andthenuses a slower linear increase to build up from th&=®IP only reduces theurrentwindow
size by 50% because RMP modifies the packet lengths accordingwimtioev size. The algorithm used for this
causesslow start toreach awindow size W(assuming W is less than two times thaximum packet size) in
O(W) time instead of O(logW) timend this makes the cost of reducing wiedow all the way to 1 packet too
high.

Finally, the exponential retransmit timer backoff is used to double the timetiraadhexpires, resetting it to
the value calculated by (1) when an ACK is finally received. Both this and algorithm @ppied to the timers
for all of the packetghat require positive acknowledgmentAlong with further decreasing congestion, this
provides an efficient detection methfmt failed sites. Thenaximum valudor a timer isclamped at a certain
value (currently 2 seconds). Then up to N retransmissions (curiéltigreallowed before a site is declared

15



/I Avoid "Silly Window" effect

if (A < MIN_PACKET && A <W)
Delay sending packet until an ACK is
received

/I Send up to 1/2 of the window at a time

S = min(P, W/2);

/I Send at least MIN_PACKET bytes

S = max(S, MIN_PACKET);

/I Can only send up to A bytes

S = min(S, A);

/I Reduce effect of lost packets

S = min(S, MAX_PACKET);

Figure 4.2: Packet Size

Algorithm

dead. With the currentlymplementedvalues this policy detects
failures in nearby sitewithin 5 seconds, andistant sitesvithin 15-20
seconds.

By using NACKs as signals of dropped packets, these algorithms
also provideeffective flow control. If a destination gets overrun by the
senders, it wildropone or morgoackets. Thisvill usually bedetected
by the destination very rapidly.When this occurs,the destination
multicasts a NACK back to thgroup. Inaddition to requesting a
retransmission of the packet from the currehien site, this NACK
also informs the original sendévho is named in th&lACK) that a
destinatiorhas lost a packdtom thatsender. This is treated teame
as an expired timer due to a lgsicket, and causes tlsender to
decrease itsvindow size by50%. Inorder to makesure thatmultiple
NACKs on the same packet do not each decreaswititow size, a
cache of the sequence numbers ofl#stthree messages sent by this

sitethatwere dropped by another site is maintained by the semdesmingNACKs arecompared against this
cache, and the window size is only modified if a NACK for this message isn't in the cache.

A problemthat RMPfaces withflow and congestion control thatthe rotatingtoken site introduces lsigher
overhead per acknowledgment than traditional protocols su€&Rs This iscompounded by the protodoting
more complicatedhan TCP and thus requiringnore processinger packet. Taolvethis problemRMP uses
larger packet sizes thaloesTCP. In anerrorfree environment, having the IP or IP Multicasting layer do the
fragmentation and reassembly is more effictaah havingRMP do it. If erroroccur,the window size quickly
drops to a single minimum size packet. The algorithm to determine the size of the packet to b& Sgfivaaut
the currenwindow size(W), the available space in tlgndow (A), and the offered packet sige), isshown in
figure 4.2. The critical step in this algorithm that up to half othe availablevindow issent at a time until the
maximum packet sizhasbeen reached.This trades off a small amount pétwork utilization in the case of
errors for typically higher efficiency of handling packets and higher throughput.

4.7 Implementation options

RMP isdesigned to be implementable in eithser-space dkernelspace. There armumerougpros andcons
to eachapproach, so RMEoes not enforce eithepproach. Traditional protocofmve been implemented as
monolithic entities in the kernelhis is motivated primarilyout of concerns for security and performance.
However, as pointed out by [JHC94], [MaBe93], and [TNML93], user-sipggementationgan bemore easily
modified and customizedare easier talebug and experiment witlare more easily portedbetween different
platforms, and can increase the performance of protocols, espedialiyrun on a multiprocessor. [TNML93]
showsthat it ispossible tamplementprotocols in user-space that actudigve better performance thkernel

space implementatinos.

Numerous "software buses" halween implementetecently, whichare designed to makapplicationswhich
do groupcommunication much easier popogram. RMP wasoriginally designed as theansport layer foone of
thesebusesthe MessageBus[Carroll93], asdipportsthese types of systems very welhome of theeatures
thatthese systems provide top of RMP aretranslation of raw dateto different formats and objecfitering
of packets based on anothevel of group ordomain identifier, dynamic loading of procesHeat arerequested
to provide a service, buffering multiple small packets ingingle large packet under heawead, and a uniform
communication interface independent of #wtual transport used. Other instanceshefe software buses are
Polylith [Purtilo85] and MultiBus [CaM094].
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5 Performance
The optimal number of packets sent to a grougnsmulticast packet for eaattatapacket sent.RMP also

sends out ACKs and Confirm packebsit the number of these decrease with increased loadaskes of few
errors andow load, RMP may require up to 3 multicasts p#ata packet.Under highload, thiswill decrease to
slightly morethanonemulticast per data packdiecause each ACWill be acknowledging moréhanonedata
packet. As the error rate increases, the number of packets sent increases, but it is always lthaérettpained
with positive acknowledgments for groups of three or more sites including the sender [ChMa84].

We have testedRMP under a

8000 T- — variety of cases. Thmost extensive
7000 + - tests were done on aset of 9
6000 1 SparcStation2's and SparcStation5's
o 5000 | DEhemetMax | on 3 Jightly loaded 10 Mb/sec
2 4000 | B MBus! Ethernet. Unless otherwise noted,
8 3000 L totally ordered packetsere used for
BRVP Il tests. Throughput d
2000 | all tests. roughput waseasure
I by timing the transfer of a 5 MB data
1000 + . :
J+J+J+ file, and so does not include packet
0 h
~ < < o o eaders. Latency was measured by
@] @] @] @] @] s H n H
v 2 2 2 2 ping-ponging” a single message

# Sources : # Members back and forthbetween thegroup
members. Because diis, latency
measures thetime to get from
application to application. To
eliminate thestart upeffects of the
adaptive time-outs, an initial run was made in each test and discarded. Thmeraunsade in eadiest and the

results were averaged together. While we do not show the standard deviations, they were quite small for all of the
cases except for 4 and 8 senderisere thePacket Starvation Effect [WhStFe94] was caushm Ethernet to

drop a significant portion of the packets seminder thiscase,the networkhas anextremely highstandard
deviation in latency, so consistent results are not possible without extremely long runs.

Figure5.1shows the aggregate throughput of the network as a function of the number of sources and number
of group members. Aggregate throughput is the throughput the user sees. It is computed by taking the amount of
data sent from all of the senders and multiplying it by the number of destinations. In these tests, the sender is also
a destination. This idone sahat it canseeits own message®tally ordered with the others. This is the way
that most groups use totally ordered multicast, and is actually the worstocabe throughput of the protocol
because of the increas€PU load ofthe senders. A single-serv@iCP/IPbased system, thdBusl, is shown
for comparison. The MBusl acceptsTEP/IP stream from eacltommunication client andoutes packets
between them.The maximum bandwidth of the Ethernet usedhis study is also shownFor the case of 1
source and 8 members, RMP achieved an aggregate throughput of 7384 KB/sec. This is 5.91 times the bandwidth
of the Ethernet. It is impossibfer any solutionthat does not use either multicast lmoadcast t@chieve any
result that breaks the Ethernet throughput boundary this way.

In graph 5.2, we see the single sender throughput plotted against the number of destinations. Fhadgéngle
throughput is equal to the aggregate throughipited by the number adestinations. To be compatibhdth
other published figures, in theseststhe sourcavas separate frorine destinations.Datafrom the MBusl is
includedfor comparison. The performance of all protocols (such as I$I¥? Sun ToolTalkthe MBusl, and
RPC) that danot use hardware broadcast or multicast drops off as a factoiNof In contrast, RMP stays
roughly constant regardless of the number of destinati®P breaks the fundamental unicdistit for two
destinations, and so has higher throughput in this environment for all groups of more than one destination.

Figure 5.1: Aggregate Throughput (KB/sec)
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In figure 5.3, wesee the saméctors, butwith
latency as the metric instead of throughputere
again, the performance oRMP stays almost
—=—Non-Muticast| | constant. While we have not yet beable tomake

Maximum fair comparisons to other protocols, ttiata that we
MBUS |
wol have showghat the latency of proto<_:oIEhat do not
ool A take advantage of hardware multicast also scales

1 2 3 a2 s 8 7 8 linearly as a function of N [BiCI94].

Number of Destinations We have also performesbmetests ofRMP over
internetworks. Onéest wasover a dedicatethbone
Figure 5.2: Single sender throughput connected betweeWest Virginia University and the

University of lllinois at Champaign-Urbana, and
another wasver two Ethernets connected bygateway. The single sender, single destinatiwoughput for
both cases was 98 KB/sec. This indicates that the routing daemon, which is implemented in software on a general
purpose host, iBmiting the speed oRMP. Wehope to perform bettdests assoon as we can get access to
hardware routers that support IP Multicast.

1300
1100
900
700 + -
500

—&— Throughput

KB/sec

6 Conclusions

In this paper wéhave described thleasicmechanisms and algorithms BMP, afully distributed reliable
multicast protocol with selectable ordering, atomicity, &ndt tolerant guarantees. Weave showrthat RMP
provides these features with vergh performance. Tour knowledge,RMP provides better performance for
totally ordereddelivery ofpackets to 2 omore destinations on an Ethertign any other protocol. Muakork
has gone into providing reliable multicast services with lower ordering guarantees becaubeliewethat the
performance of a totally ordered multicast protogakinherently low. RMP suggests that this ot the case,
and that arefficient reliable multicast serviogan providetotal ordering of messagdsr only a small latency
penalty. Finally, because of its usenadiltiple groups, an optional client/server architecture, its fully distributed
nature, and its flow ancbngestion control algorithms, we expBdP toscale gracefully and efficiently to large
groups spread over a large internetwork. Initial resdltgirm this hypothesis, and we planfoother test this in
the near future.
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